Ymer™ N-120

Time to change your Polyurethane Dispersions !

Presented by: Michael Austin MRSC CChem Market Development Manager – Coatings & Resins. West Europe.

Perstorp in brief

- 130 + years. Swedish HQ. 14 manufacturing sites globally, ca. 1,800 employees .
- World's market leader in pentaerythritol, trimethylolpropane, speciality polyols, 2-ethylhexanoic acid, DMPA, ε-caprolactone/polycaprolactone and formaldehyde manufacturing technology.
- Strong emphasis on bio-based RM initiatives today.

Coating resins and paint-Perstorps offer

- Pentaerythritol, phthalic anhydride, isophthalic acid for alkyd resins
- Micronized Pentaerythritol and Di-Pentaerythritol for intumescent coatings.
- For PUD: Polycaprolactones (Capa[™]), Polycarbonate diols (Oxymer[™]), DMPA (BisMPA[™]) Non-ionic Diol(s).
- Polyols, Dendritics and Alkoxylates for Radcure systems.
- Trimethylol Propane, Neopentylglycol (Neo™), BEPD, Di-TMP, for Polyester Resins.
- Capa[™] as a reactive diluent in 2K PU.

Polyurethane dispersions

High molecular weight polyurethane dispersed in water

- Versatile products both in coatings and adhesives
- High performance system, flexible and tough
- Allows formulation of soft flexible or hard durable systems
- Environmentally friendly low volatile organic content (VOC)
- Suitable for wide range of substrates e.g. wood, plastic, metal, leather & textiles

Where are PUD's used?

- Coatings
 - Metal
 - Wood
 - Glass
 - Concrete
 - Basecoats
 - Flooring
- Adhesives
- Leather finishes
- Textile Coatings
- Glass fiber sizings
- Film barriers

Polyurethane dispersions

Current developments

- NMP free PUDs
- Reduce solvent -> solvent free PUDs
- ➡ Increasing solid contents > 40 %
- Reduction of the use of amines
- Development of UV PUDs

Perstorp products for polyurethane dispersions

Perstorp offers a wide palette of products for polyurethane dispersions

Internal stabilization of Polyurethane dispersions

Stabilization can be achieved using either ionic or nonionic (hydrophilic) segments

- Ionic stabilization (anionic or cationic) → neutralized di-hydroxy acids, e.g. dimethylol propionic acid (Bis-MPA) or dimethylol butanoic acid (DMBA)
- Nonionic stabilization → most common are polyethylene glycols

Ymer[™] N-120 product characteristics

Diol with a long ethoxylated capped side chain which provides non-ionic segments in lateral positions along the polymer backbone

- Appearance at RT:
- ➡ Melting range: 20 40°C
- OH-number:
- Molecular weight:
- Colour (liquid) Hazen:

- white, waxy solid
- 100-120 mg KOH/g
 - ~ 1,000 g/mol
 - < 100 APHA

Advantages of Ymer[™] N-120

Provides non-ionic segments in lateral position along the polymer backbone

- Ready to use, no additional synthesis step required, e.g. compared to adduct process
- Low viscosity product, decreases the need of co solvents during the prepolymer synthesis
- Two hydroxyl groups enables incorporation along the polymer backbone
 - No end capping of the polymer
 - Suitable in e.g. polyurethanes, polyesters and alkyd resins
- Contributes with increased stability towards pH variations
 - Highly increased stability towards electrolytes (salts)
 - Increased freeze/thaw stability

Formulation – content nonionic and anionic

Recommended content of Ymer[™] N-120 and bis-MPA

Recommended range: ≈ 10 wt % Ymer[™] N-120 with 2.5 wt % bis-MPA¹

¹ Stabilizer loading depends on formulation and dispersion technique.

Combination of Ymer[™] N-120 and Bis-MPA

Combination of non-ionic and anionic stabilization

- The non-ionic stabilizer Ymer[™] N-120 offers reduced prepolymer viscosity and lower amount of anionic stabilization required
- ◆ 4-10 wt %* of Ymer[™] N-120 together with 3-4 wt %* of Bis-MPA in the prepolymer enables possibility to synthesize solvent free PUDs (NCO/OH > 1.5)
- Charge the diol, Bis-MPA and Ymer[™] N-120, heat to obtain a homogeneous mixture, cool to suitable reaction temperature and charge the isocyante(s)
- Incorporation of Ymer[™] N-120 in the PUD increases flexibility of the PUD, maintained chemical resistance but reduced hardness

WINNING FORMULAS

PUD formulation

A comparative study between non-ionic co-stabilized PUD and a purely anionicly stabilized PUD

- PUD's prepared using the prepolymer melting process
- Polyester macro diol (hexane diol adipic acid polyester)
- → H_{12} MDI (NCO/OH = 1.8), solid content of 35 wt %
- Non-ionic PUD is solvent free, anionic contains NMP (~ 4 %)
- The non-ionic PUD is co-stabilized with bis-MPA
 - Reduced water sensitivity and softness of the coating
 - Less non-ionic content needed

Wt % based on dry

Stabilizing	Non-ionic	Anionic
	10.3	
ноон -оос	2.5	5.5

Materials

Prepolymer (step 1)	Non-ionic ¹	Anionic ²
H ₁₂ MDI	37.8	39.4
Hexanediol adipate Ymer N-120	49.0 10.6	44.7
Bis-MPA	2.6	5.1
DBTL	0.04	0.04
NMP		10.8
Total	100.0	100.0
PUD synthesis	Non-ionic	Anionic
Prepolymer from step 1	33.7	35.8
Triethyelene amine	0.6	1.3
Water	64.7	61.7
Diethylene amine	1.0	1.2
Total	100.0	100.0
NCO/OH ratio	1.8	1.8
Degree if neut. %	90	90
NH/NCO molar ratio	0.8	0.8

- 4,4-dicyclohexylmethane diisocyanate
- Polyhexanediol adiapate (1,000 g/mol)
- ➡ NCO/OH=1.8
- ♦ NH/NCO=0.8
- Solid content = 35 wt %
- Dibutyltin dilaurate (catalyst)
- Triethylamine (neutralizing base)
- Ethylene diamine (chain extender)
- N-methyl pyrrolidone (NMP)

Synthesis and processing

	Non-ionic	Anionic
Consolvent in synthesis	No	NMP (11 wt % on dry)
Appearance	Milky white	Transparent blueish
Viscosity mPas	7.8	13
рН	6.6	9.8
Stability	3 months 50°C	3 months 50°C

- Ymer[™] N-120 enables synthesis of solvent free PUD's
- ➡ Equal stability of the non-ionicly co-stabilized PUD compared to the anionicly

Dispersion stability – electrolytes

Hydrochloric acid (HCl)(aq) or Calcium Chloride ($CaCl_2$) (aq) was added dropwise to the PUD with a maximum addition corresponding to 0.2M. Thereafter the PUD was filtered and any coagulate was collected, dried in the oven for 24 hours at 50°C and weighed.

➡ Non-ionic stabilized PUD's displays very low sensitivity towards pH and salt variations

Coating hardness

Pendulum hardness:

Coating tests were performed after a drying period of 72 hours at 23°C and 50 % RH. Dry film thickness was about 30 μ m.

- Nonionic co-stabilization reduces the coating hardness ethoxylates are flexible
- The non-ionic PUD use less content of cycloaliphatic polyisocyanate (weight basis)

Surface energy of the coatings

Non-ionic co-stabilization decreases the water drop contact angle
– ethoxylates have high surface energy

Coating solvent resistance

Covered spot tests:

2 minutes (acetone), 24 hours (water) and 6 hours (ethanol), recovery 2 hours.

- 0 = no effect on the coating
- 5 = sever damage.

 Despite the higher fraction of hydrophilic segments nonionic co-stabilization show higher solvent and water resistance

Tensile properties – impact of water treatment

Free films were immersed in water for 24 hours

- Softer and flexible coatings with higher surface energy absorb more water
- A flexible structure reduces the build-up of internal stresses due to swelling

Tensile properties – impact of water treatment

Nonionic co-stabilized PUDs form tough and flexible films

- Tensile properties measured before and after water treatment
- ➡ Immersion in water 24 hours, 2 hour recovery, deformation rate 500 mm/min

Concluding remarks

- Ease of processing, no adduct synthesis required
- Less/no neutralizing amine
- Reduced/no need for co-solvent
- Reduced content of isocyanates
- Increased stability in electrolytes
- Insensitive to pH variations
- Shear stable
- Freeze/thaw stable

Further concluding remarks

- Easier to incorporate than other non-ionics e.g PEG 600, MPEG 1000 due to lower M.Pt.
- Cost/Performance advantage over other high-end non-ionics.
- Well suited to softer, flexible substrates e.g leather & textile but also suitable for wood PU lacquers where Urea bonds content is high (> 1.8).
- Can assist pigment wetting and dispersion stability (TiO2)
- Perstorp have studied alternative `n' values to deliver different properties.

Solvent free PUD

To obtain solvent free PUDs a reduced prepolymer viscosity is desired together with solubilized Bis-MPA

Possible ways towards solvent free PUDs

- Pre-neutralized Bis-MPA
 - Salts of Bis-MPA show highly improved solubility
- Combination of low viscous polyols together with a higher NCO/OH ratio
- Combination of Ymer[™] N-120 and Bis-MPA
- Use of acetone process
 - Removal of acetone renders a solvent-free PUD

Thank you for your attention

Michael Austin michael.austin@perstorp.com

Visit us at stand # 7A-623.

