Optimizing flexible PVC formulations based on polyol ester plasticizers

PVC Formulation April 10-12, 2018, Cologne Anders Magnusson

Perstorp A leading player with 2011 2015 Completes major Acquires Koei's 136 years of expertise investment to double penta business the Capa[™] monomer capacity 2016 2014 2011 Inauguration Head office of a plant for Acquires 1990's moves to **BioFuels** in Ashland's Malmo Fredrikstad Refocus on the core Penta business business to become a world leading Specialty 2008 Chemicals company 1881 Acquires a Perstorp was founded TMP plant in by Mr. Wilhelm Wendt Zibo, China 2005 2017 2013 1940's PAI acquires Inauguration of Perstorp

Scandinavia's first modern plastics industry, with more than 10,000 different products

1970's World's largest exporter of decorative high-pressure laminates

2006 Establishes sales

office in Shanghai

2008 Acquires the Capa[™] business from Solvay Group

2013

Divestment of Formox to Johnson Matthey and Perstorp Ättika to Kavli Group

new NEO plant

in Zibo, China

2013

Acquires

Chemko's

calcium formate

and penta

businesses

2015

Inauguration of a new Oxo plant in Sweden. Largest investment in company history

Acquires Polialcoli's TMP and Neo businesses

Perstorp in the plasticizer industry

- Fully integrated plasticizer producer since 1980's
- Launched Emoltene[™] 100 (DPHP) in 2009 for durable applications
- Investment announced in 2011 to build a new production platform for new plasticizers
- Exited from DOP business completely early 2012
- Investment completed by Q1 2015
- Launched Pevalen[™] in 2013, a genuine non-phthalate based on polyolester
- Storage facilities in UK, Belgium, Germany, Portugal and US
- Member of European plasticisers, VinylPlus and founding member of PlasticiserPlus

Perstorp in brief

- World leader in several sectors of the specialty chemicals market
- Pioneer in formalin chemistry, plastics and surface materials
- Since December 2005 controlled by PAI partners, a leading European private equity company
- Present in 26 countries and production plants in Europe, Asia and North America
- Sales offices in all major markets

PVC Formulation Ingredients

Heat stabilizers

Lubricants

Adhesion promoters

Hydrocarbon oils

Antioxidants

Impact modifier

Plasticizers

Pigment

Blowing agents

Filler

Flame retardents

Viscosity modifier

Changing plasticizer – how hard can it be?

- Easy replacement with no or little reformulation!
- Can substitute traditional phthalates easily!
- One size fits all!
- Quickly and efficiently switch (from classified DOP)!
- Substitution

What is the risk of improper reformulation?

PVC formulation related failure

What to consider when reformulating?

- Compatibility
- Processing
- Viscosity
- Hardness
- Plastisol stability
- Sustainability
- Legislation

Plasticizer Characteristics

Pevalen[™] has high calculated compatibility and low volatility

Name	Solubility parameter (J ^{1/2} cm ^{-3/2})	Weight Loss (%)	Viscosity (mPas, 20°C)	Molecular weight (g/mol)
PVC	19.40			
Pevalen	18.39	11	35	472
DOTP	17.94	15	86	390
DINCH	16.76	19	52	420

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Compatibility

Pevalen[™] lower haze is a response to higher compatibility

Haze

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Compatibility

Pevalen[™] higher weight flow is a response to higher compatibility

Diffusion from P-PVC to U-PVC

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Plasticizer absorption time

PevalenTM has shortest absorption time \rightarrow faster dry mixing processing, hence less energy required

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Brookfield viscosity 2h and 24h

Pevalen[™] yields plastisol with low initial viscosity and keeps its viscosity well over time

Processing Hardness Viscosity Plastisol stability Sustainability

Perstorp

Compatibility

Brookfield viscosity 3 Phr TiO₂ 2h and 24h

Pevalen[™] yields plastisol with low initial viscosity and keeps its viscosity well over time

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Solution temperature

Pevalen[™] has a higher solution temperature, but...

Name	Solution Temperature, °C
DOTP	130
DINCH	135
Pevalen	141

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Gelation

... Pevalen^m has faster gelation \rightarrow enables high volume manufacturing and energy savings

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Compatibility

Processing

Hardness

Pevalen[™] yields softest material

 \rightarrow less impact on raw material consumption and thereby less environmental impact

Hardness Viscosity Plastisol stability Sustainability

Hardness

Pevalen[™] yields softest material

 \rightarrow less impact on raw material consumption and thereby less environmental impact

Compatibility Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Legislation

55

65

75

Hardness

Pevalen[™] yields softest material

 \rightarrow less impact on raw material consumption and thereby less environmental impact

Compatibility Processing

Hardness

Viscosity

Plastisol stability

Sustainability

Substitution Factor (S.F) vs DOTP

Pevalen[™] yields softest material

 \rightarrow less impact on raw material consumption and thereby less environmental impact

S-PVC K-value 52

- Shore A 85
 + SF 1,12
- Shore A 70 + SF 1,09

E-PVC K-value 69

• Shore A 75 + SF 1,13

S-PVC K-value 82

- Shore A 85
 + SF 1,25
- Shore A 70 + SF 1,09

Hardness

Viscosity

Plastisol stability

Sustainability

Compatibility

Tensile – S-PVC

PevalenTM yields softest material and highest strain \rightarrow enables higher content of filler

Processing Hardness Viscosity Plastisol stability Sustainability Legislation

Efficiency impacts viscosity

Requires BYK additive to counterbalance increased viscosity

Pevikon P2170	100	100	100	100
Pevalen		50	50	50
Dinch	60			
Viskobyk 5120			3,5	7
Baerostab UBZ 711-1 RF	3	3	3	3

Viscosity, 0h, cP	2050	2900	1850	1450
Viscosity, 4h, cP	2500	3600	2300	1650
Viscosity, 24h, cP	2750	4250	2750	1900
Viscosity, 72h, cP	2600	4850	3000	2050
Viscosity, 168h, cP	2750	5400	3000	1950

Compatibility Migration

Processing

Hardness

Viscosity

Plastisol stability Sustainability Legislation

PVC grades impacts viscosity

PVC grades is a tool to formulate hardness and viscosity

Pevikon P2170	100	100			95
Pevikon P602				50	
Solvin 360 NA			50		
Solvin 382 NG			50	50	
Solvin 266 SC					5
Pevalen	50	55	50	50	50
Baerostab UBZ 711-1 RF		3	3	3	3
Hardness, Shore A	74	69	69	69	72
Viscosity, 0h, cP	2900	2104	2851	3640	2647
Viscosity, 6h, cP		2851	4429	4174	2927
Viscosity, 24h, cP	4250	3462	5371	5371	3894
Viscosity, 48h, cP	4850	3945	5905	5142	4276

Compatibility Processing

Hardness

Viscosity

Plastisol stability Sustainability

Compatibility

Processing

Hardness

Viscosity

Plastisol stability

Proper formulated yields stable pigmented Pevalen[™] plastisol

DOTP

Pevalen

Reformulated Pevalen

Plastisol stability Sustainability Legislation

Compatibility

Plastisol viscosity

Proper formulated yields retained viscosity

Processing Hardness Viscosity Plastisol stability Sustainability Legislation

Compatibility

Processing

Carbon footprint

Improved sustainability upon PevalenTM usage*

Carbon Index (DPHP = 100)

*DINCH and DOTP are expected to have a higher Carbon Index than DPHP/Emoltene 100 due to production characteristics

Hardness Viscosity Plastisol stability

Sustainability

Legislation

PLASTICISERSIncluded in REACH Candidate List or pending AuthorisationORTHOPHTHALATES High Molecular weight > 7C DINPSebacates DMSORTHOPHTHALATES Low Molecular weight 3-6C DEHPORTHOPHTHALATES DINPAzelates DIDAzDCHPDEPDibenzoates NBTrimellitates TOTMAcetatesDCHPDibenzoates NBTrimellitates TOTMAcetatesDCHPNBIDBVegetable Oil based Expoxidized, hydrogenated and acetylated	CLASSIFIED	NON-CLASSIFIED PLASTICISERS				
REACH Candidate List or pending Authorisation DINP DIDP DPHP Azelates DIDAz ORTHOPHTHALATES Low Molecular weight 3-6C Cyclo- hexanoates Terephthalates DOTP Adipates DEHA Alkyl sulfonates ASE DEHP DBP DBP Dibenzoates Trimellitates TOTM Phosphate TPP Citrates ATBC DCHP Benzoates Vegetable Oil based Velevetoe	Included in	High Mo l ecular weight ≥ 7C				
ORTHOPHTHALATES Low Molecular weight 3-6CCyclo- hexanoatesTerephthalates DOTPDEHADINA DIDASulfonates ASEDEHPDBPDIBPBBPDCHPDCHPDCHPBenzoatesVegetable Oil based						
DEHP DBP DIBP BBP Dibenzoates Trimellitates ODEB OXPDB TOTM Phosphate Citrates ATBC Benzoates Vegetable Oil based	Low Molecular weight			DEHA DINA		sulfonates
Dibenzoates ODEB OXPDBTrimellitates TOTMAcetatesButyratesDCHPBenzoatesVegetable Oil basedVelevates	DEHP DBP	nexanoates	DOTP DBT			
Delizodies				Aceta	tes	Butyrates
	DCHP		Vegetable Oil based Expoxidized, hydrogenated and acetylated vegetable oil		Valerates	

This table is for illustration purposes only. The list of plasticisers is non-exhaustive and box sizes do not accurately represent market volumes.

Compatibility Processing Hardness Viscosity Plastisol stability Sustainability Legislation

Source: www.europeanplasticizers.org

Changing plasticizer – how hard can it be?

Easy replacement with no or little reformulation!

Can substitute traditional phthalates easily!

One size fits all!

Quickly and efficiently switch (from classified) DOP)!

Summary

- Different plasticizer molecular structure gives diverse properties
- Pevalen[™] structure yields high compatibility improving clarity and the visual appearance
- Pevalen[™] has a unique combination of high efficiency and low volatility
- Pevalen[™] has an unique property combination of low viscosity and fast gelation
- Pevalen[™] will in overall contribute to improved sustainability
- \rightarrow Proper formulating is essential and collaboration is key to success

One molecule can change everything

Anders Magnusson Technical Market Development Manager Mobile: +46 734 274728 e-mail: anders.magnusson@perstorp.com www.perstorp.com

