Perstorp Cationic Offering

Perstorp in brief

- World leader in several sectors of the specialty chemicals market
- Pioneer in formalin chemistry, plastics and surface materials
- Since December 2005, Perstorp has been owned and controlled by PAI partners, a leading European private equity company
- In September 2018, Perstorp was transferred into a new investment fund managed by PAI Partners with Landmark Partners as lead investor, alongside other co-investors. In addition Landmark Partners and its co-investors have committed EUR 130 million to Perstorp for growth opportunities

1,350 EMPLOYEES worldwide

YEARS of professional expertise

SITES Perstorp production

BILLION SEK

turnover in 2018

vith sales presence and represented in many more

General introduction to Radiation curing

3

Perstorp

Different types of curing

Л

Technology	Advantages	Disadvantages
Solvent based	Long history and experienceLow costVariety of materials	High VOCSlow drying
Water based	Seen as "safe"Low VOC	Low solidsSlow drying
Radiation curing	 VOC-free - environmental friendly technology and no solvent wastes Fast curing - higher speed in production lines Space saving Room temperature process - lower energy in processing High performance & quality of finished materials (ex hardness, chemical resistance) Versatile - solution for many applications 	 Often perceived as hazardous Migration Acrylates can have poor adhesion Curing must be carefully controlled Seen as high cost

Comparison of UV technologies

Free radical curing


- The dominant technology >95%
- A photo initiator creates a free radical when exposed to UV light

 $\land \longrightarrow R$

Cationic curing

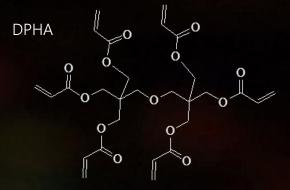
R^{__O}_

- <5% of Radcure market
- A photo initiator generates an acid when exposed to UV light

Advantages	Disadvantages
 Speed Low energy High resolution 	 High shrinkage Poor adhesion Curing is inhibited by O₂ Acrylates often are skin irritants & allergens
Low shrinkage Exceptional adhesion on difficult substrates No O_2 inhibition Exceptional flexibility Low migration Low levels of toxicity	 Curing is inhibited by humidity and amines Limited range of raw materials
and irritation Dark curing, offers complete curing	

Free radical formulation

Binders


(Meth)-acrylated oligomers [Example polyester, urethane or epoxy backbone in the oligomers]

Reactive diluents

(Meth)-acrylated monomers [Example HDDA, TMPTA, TPGDA, DPHA]

Photo initiator system

Additives Pigments Fillers

Perstorp

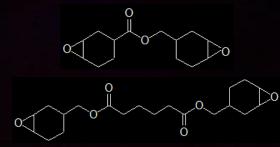
Cationic formulation

Binders

Cycloaliphatic epoxy [Example 3,4-Epoxycyclohexylmethyl 3,4epoxycyclohexanecarboxylate]

Reactive diluents

Oxetanes, epoxy monomers, vinyl ethers [Example Curalite[™] Ox and OxPlus]

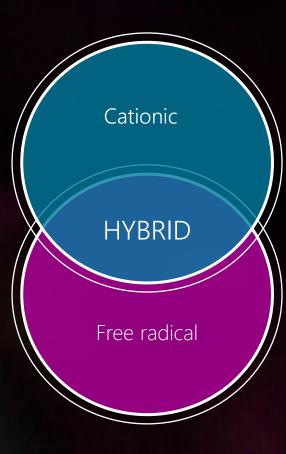

Modifiers

Polyols

7

[Example Polyether polyols, Dendritic "Boltorn" polyols]

Photo initator system Additives Pigments Fillers


Curalite[™] OxPlus

Hybrid systems

Combination of cationic & free radical systems (Interpenetrating networks IPN)

Combine benefits of both technologies

8

Perstorp

Cationic Technology

Values and applications Our offering for Cationic UV

9

Why use Cationic

- Cationic technology is used when free radical/acrylates cannot meet the wanted properties.
- Hybrid systems can often be a solution to combine the benefits of cationic and free radical technologies.

Advantages

- + Low shrinkage
- + Exceptional adhesion on difficult substrates
- + No O_2 inhibition
- + Exceptional flexibility
- + Low migration
- + Low levels of toxicity and irritation
- + Dark curing, offers complete curing

Main applications Cationic UV curing

Coatings

Good adhesion on challenging substrates like metal, glass and plastic

Adhesives

Good adhesion,

flexibility and

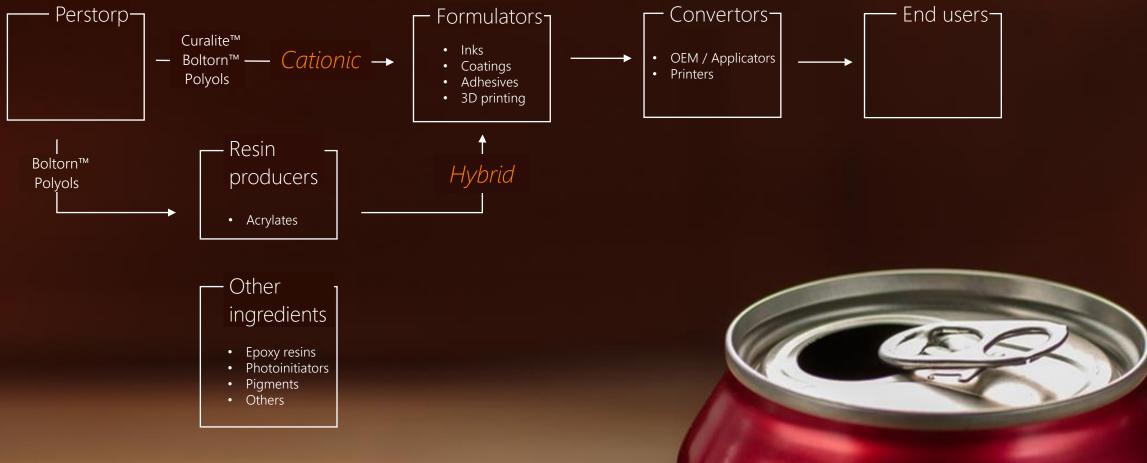
toughness

Inks

Low migration in sensitive applications like food packaging & good adhesion on difficult substrates

11

High quality prints for prototyping and manufacturing like dimensional stability and through cure


3D printing

20 APRIL 2022

Perstorp

Where we support in the value chain

Product offering for Cationic technology

REACTIVE DILUENTS

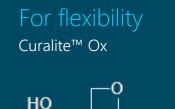
Oxetanes Performance boosters

Curalite™ Ox

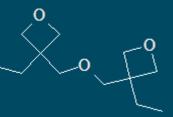
Curalite[™] OxPlus

Alkoxylates High reactivity and safe polyethers

MODIFIERS


Polyols

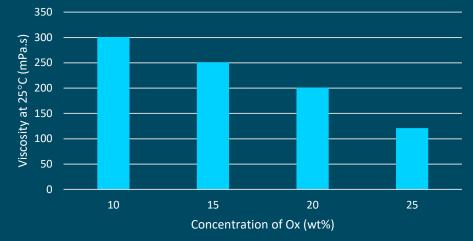
Chain extenders


Boltorn[™] Multifunctional and highly branched dendrimers

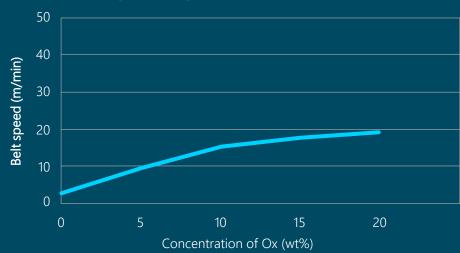
Curalite[™] Designed to enhance Cationic UV Curing

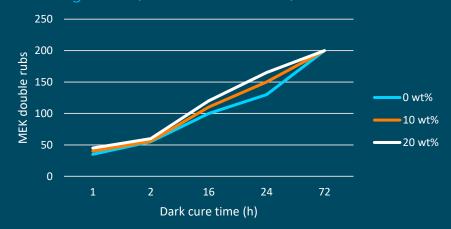
- Reducing viscosity of your formulation
- Improving UV reactivity
- High surface and through cure
- No shrinkage during curing
- Colorless
- Low odor & no skin irritation

For crosslinking Curalite™ OxPlus


Typical properties	Curalite [™] Ox	Curalite [™] OxPlus
Appearance	Colorless liquid	Colorless liquid
Reactive groups	1 oxetane, 1 hydroxyl	2 oxetanes
Oxetane equivalent weight (g/eq)	116	107
Hydroxyl equivalent weight (g/eq)	116	-
Hydroxyl number (mg KOH/g)	485	-
Molecular weight (g/mol)	116	214
Viscosity at 20°C (mPa.s)	27	15
Color (APHA)	10	9
Acid number (mg KOH/g)	0,2	0,2

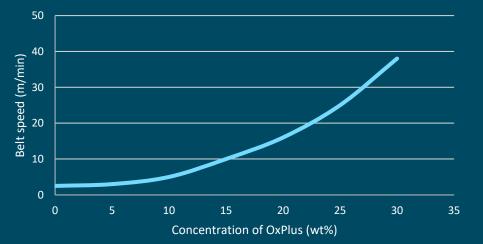
Curalite™ Ox

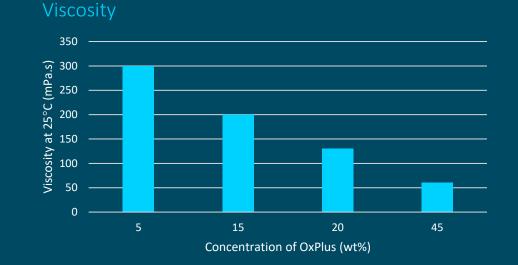

- Suitable in formulation in the range of 5 to 25 wt%
- Strong diluting power and increasing the reactivity
- Best performance for flexibility
- Through our Pro-Environment solutions, available as partly renewable
 - Curalite[™] Pro Ox C20 20% renewable content
 - Curalite[™] Pro Ox C50 50% renewable content



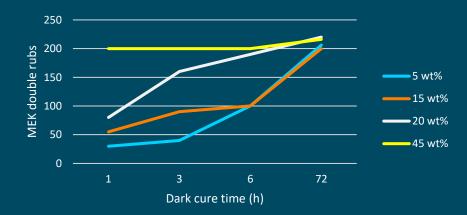
Surface cure (tack free)

15


Through cure (chemical resistance)



Curalite[™] OxPlus


- Suitable in formulation in the range of 5 to 25 wt%
- Strong diluting power and increasing the reactivity
- A di-functional crosslinker
- Improved chemical resistance and hardness
- Less moisture sensitive compared to Curalite[™] Ox

Surface cure (tack free)

Through cure (chemical resistance)

Curalite[™] OxPlus has been formulated with cycloaliphatic epoxy and cationic photoinitiator, and cured with a Hg lamp

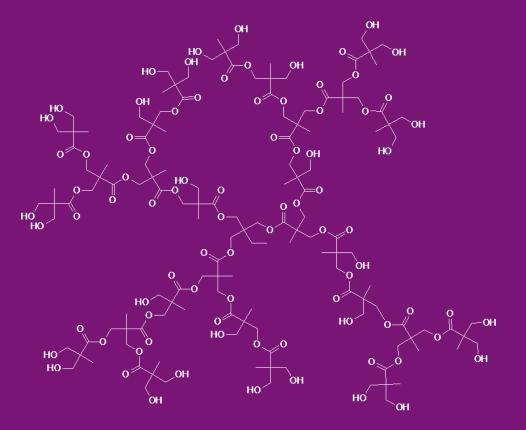
Curalite™ Performance & Value proposition

Performance

- Reducing viscosity of your formulation
- Improving UV reactivity
- High surface & through cure
- Reducing the Tg
- No shrinkage during curing
- Colorless
- Low odor, not skin irritating/sensitizing and very low migration as the system continues to cure after radiation

Value proposition

- Excellent dilution power
- Faster process
- Hardness & chemical resistance
- Flexibility
- Good adhesion and dimensional stability
- Transparent solutions
- Better alternative than standard free radical UV curable monomers in many applications


Dendritic Polymers – Boltorn™

Hyperbranched Polymers

- High functionality
- Highly branched polymer backbone

Boltorn™ H2004 recommended for

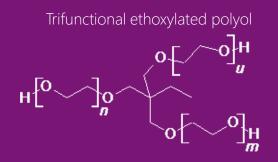
- Best effect when used in the range of 10 wt%
- Superior wear resistance
- Good flow while high functionality
- Improved flexibility
- High crosslinking
- Good chemical resistance

More Boltorn[™] grades available to tailor-make your formulation

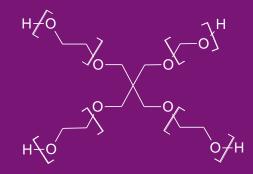
Polyether polyols

Broad offer in polyols for cationic formulations

- Di-, tri-, tetra- and hexa-functional polyols
- Ether bonds

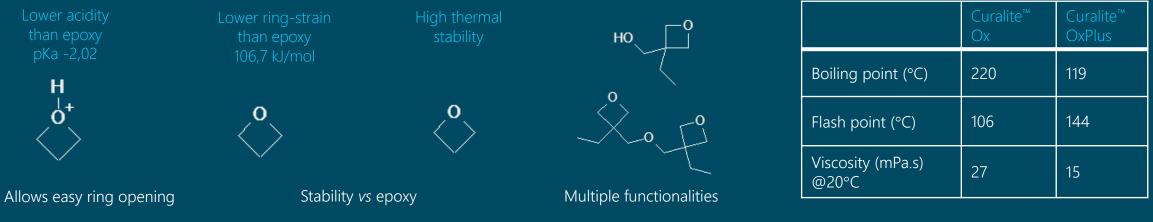

Tailored properties

• Changing polyol and the ratio between epoxide/oxetane and polyol


Many grades allowing freedom to formulate

Difunctional propoxylated polyol

Tetrafunctional ethoxylated polyol

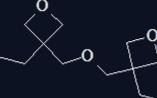


Other application areas

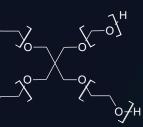
Curalite[™] Oxetane chemistry advantages


High reactivity ingredient & powerful diluent offering possibility to explore other areas of use

- Efficient curing agent in cationic curing, thanks to its easy ring opening in presence of certain Lewis or Brönsted acid
- Powerful **reactive diluent**, allowing e.g. incorporation of inorganic materials like certain pigments
 - Advantages: low odor and no skin irritation, as well as low volatility vs many other (reactive) diluents
- Used as an intermediate e.g. in the production of stabilizers for many plastics like PC, PBT PVC
- Used in **formulations** e.g.:
 - As acid scavenger
 - In the production of casting molds for metal industry (foundry resins)



Conclusions


- Cationic a fast growing, specialty segment
- Leading supplier in cationic ingredients
- Your partner in cationic formulations

Curalite[™] OxPlus

Polyether polyols

Persion

Appendix

20 APR

For your reference

- Products are available on all major markets
- Available documentation
 - TDS
 - SDS
 - Technical Information Leaftlets
 - Perstorp products for cationic radiation curing (TI 0128)
 - Oxetanes, Basic information on their chemistry & application to UV cationic curing (TI 0134)
 - Cationic UV screen ink formulations (TI 0136)
 - Cationic UV flexographic ink formulations (TI 0138)
 - Cationic UV overprint varnish formulations (TI 0140)

EXAMPLES OF Cationic on challenging substrates

Plastics

- Polyethylene
- Oriented Polypropylene
- Polyester
- Polyacrylate
- Polycarbonate
- Polystyrene
- Polyvinyl Chloride
- Acrylonitrile-Butadiene-Styrene
- Thermoplastic Polyurethane
- Polyamide

Metals

- Aluminium
- Tin-plate
- Tin-free steel