

Cationic UV Curing Speeding up reactivity 15x with CuraliteTM

European Coatings Show, April 5th 2017 Presented by David Engberg

Introduction

Background

- MSc. In Chemical Engineering at the Faculty of Engineering at Lund University in Sweden.
- At Perstorp since 2007
- In previous role worked at Perstorp's department of technology

Speaker **David Engberg** Global Product Manager Specialty Polyols

Everywhere you need us

- World leader in several sectors of the specialty chemicals market
- Pioneer in formalin chemistry, plastics and surface materials
- Founded in 1881 in Perstorp, Sweden
- ➡ 135 years of winning formulas
- 1,500 employees in
 22 countries

Different types of curing for food packaging

Radiation curing applications

2016: 550,000 Tonnes

Reduction in traditional printing inks, increase in electronics and digital 3D

Two types of <u>Rad</u>iation <u>cure</u>

Free radical curing

The dominant technology >95%

Curing by use of a radical generating photo-initiator or electron beam

R j'

Cationic curing

<5% of Radcure market

Curing by use of a "Lewis acid" generating photo-initiator

Comparison of UV technology

Technology	Advantages	Disadvantages
Radcure Free radical >95%	 Space saving Speed Versatile VOC-free Low energy High quality/ high resolution 	 Often perceived as unsafe <u>Acrylates</u> can have poor adhesion Curing must be carefully controlled Curing is affected by O2.
Radcure Cationic <5%	 All of above Exceptional adhesion on difficult substrates No "Oxygen inhibition" High chemical resistance Exceptional flexibility Low migration Safe 	 Affected by amines and humidity Limited range of raw materials

Main applications for cationic curing

Graphic Arts

Exceptional adhesion giving low migration in sensitive applications like food packaging

Coatings

Outlasting perfromance on difficult substrates like metal, glass and plastic

Other

- Adhesives
- Silicone release agents

Electronics

Cationic UV is the perfect choice for challenging applications

Cationic on challanging substrates

Plastics

- Polyethylene
- Oriented Polypropylene
- Polyester
- Polyacrylates

- Polycarbonate
- Polystyrene
- Polyvinyl Chloride
- Acrylonitrile-Butadiene-Styrene
- Thermoplastic Polyurethanes
- Polyamides

Metals

- Aluminium
 - Vacuum deposited
 - Anealed
 - Foils
 - Drawn containers
 - Monobloc
- Tin-plate
- Tin-free steel

Why cationic is great

Carton packaging

- Flexo printed
- Carton packaging for retorted food
- Alternative to traditional cans

Decorative Sleeves

- Shrink sleeves
- "Gravure quality" print
- High shrinkage
- Superior scratch resistance

Beverage can-base

- Long term resistance and fast process
- Designed for slip and resistance

The Cationic formulation

Our offer for Cationic formulation

Reactive diluent/Crosslinker

➡ Curalite[™]

Oxetane performance boosters

Modifiers – Polyols

Boltorn™

Multifunctional and highly branched dendrimers

Alkoxylates

High reactivity and safe polyethers

Capa[™] Polyols

Cross-linkers and flexibilisers with high reactivity

Introducing Curalite[™]

- Increasing reactivity enabling faster printing speed
- Lowers viscosity
- Curalite[™] Ox and Curalite[™] OxPlus
- High availability of fresh material
- Non skin-irritating and low odor
- Fast and reliable supply
- Flexibility in order sizes

Curalite[™] – Designed to enhance Cationic UV Curing

Reactive diluent

Modifiers — Polyols

Curalite™ Ox

- Increasing the reactivity up to 7 times
- Best performance for flexibility
- Suitable in formulation in the range of 5 to 20%
- Increased dark cure gives increased through cure

Reactive diluent

Modifiers – Polyols

Speeding up your cationic formulation

Curalite[™] OxPlus

A di-functional Oxetane crosslinker

- Improved chemical resistance and hardness
- Increasing the reactivity up to 15 times
- ➡ Suitable in formulation in the range of 10 to 40%
- Use less amounts of expensive photoinitiator
- Perfect for environments with high humidity

Give your formulation

an extra edge

Reactive diluent

Modifiers – Polyols

Dendritic Polymers – "Boltorn"

Hyperbranched Polymers

- High functionality
- Densely branched polymer backbone

Boltorn[™] H2004 recommended for cationic formulation

- Superior wear resistance, improved flexibility and rheological behavior
- Improves ink flow
- Improved flexibility
- Offers good cross-linking

Reactive diluent

Modifiers – Polyols

Caprolactone Polyols

- Flexibility & toughness
- Low Viscosity
- Very low acid value
 - Prolonged shelf-life
- ➡ Di, tri and tetra functional grades

Modifiers – Polyols

Polyether polyol

Broad offer in **polyols for cationic formulations**

- > Di-, tri- and tetra functional polyols
- > Ether bonds

Tailoring properties

Changing polyol and the ratio between epoxide/oxetane and polyol

Alkoxylates for freedom when formulating

Thank you for listening! Q&A

Welcome to booth 7A=603

